Increased de novo ceramide synthesis and accumulation in failing myocardium.

نویسندگان

  • Ruiping Ji
  • Hirokazu Akashi
  • Konstantinos Drosatos
  • Xianghai Liao
  • Hongfeng Jiang
  • Peter J Kennel
  • Danielle L Brunjes
  • Estibaliz Castillero
  • Xiaokan Zhang
  • Lily Y Deng
  • Shunichi Homma
  • Isaac J George
  • Hiroo Takayama
  • Yoshifumi Naka
  • Ira J Goldberg
  • P Christian Schulze
چکیده

Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long-chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long-chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ceramide sensitizes astrocytes to oxidative stress: protective role of cannabinoids.

Cannabinoids induce apoptosis on glioma cells via stimulation of ceramide synthesis de novo, whereas they do not affect viability of primary astrocytes. In the present study, we show that incubation with Delta9-tetrahydrocannabinol did not induce accumulation of ceramide on astrocytes, although incubation of these cells in a serum-free medium (with or without cannabinoids) led to stimulation of...

متن کامل

The role of de novo ceramide synthesis in the mechanism of action of the tricyclic xanthate D609.

The cytotoxic effects of several chemotherapeutic drugs have been linked to elevated de novo ceramide biosynthesis. However, the relationship between the intracellular site(s) of ceramide accumulation and cytotoxicity is poorly understood. Here we examined the relationship between the site of ceramide deposition and inhibition of protein translation and induction of apoptosis by the antitumor/a...

متن کامل

Arsenic trioxide induces accumulation of cytotoxic levels of ceramide in acute promyelocytic leukemia and adult T-cell leukemia/lymphoma cells through de novo ceramide synthesis and inhibition of glucosylceramide synthase activity.

BACKGROUND AND OBJECTIVES Arsenic trioxide (ATO) is an effective treatment for acute promyelocytic leukemia (APL) and potentially for human T-cell leukemia virus type I (HTLV-I) associated adult T-cell leukemia/lymphoma (ATL). Many cytotoxic drugs induce apoptosis through the generation and accumulation of the sphingolipid breakdown product, ceramide, a coordinator of the cellular response to s...

متن کامل

Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins.

Recent studies are beginning to implicate sphingolipids in the heat stress response. In the yeast Saccharomyces cerevisiae, heat stress has been shown to activate de novo biosynthesis of sphingolipids, whereas in mammalian cells the sphingolipid ceramide has been implicated in the heat shock responses. In the current study, we found an increase in the ceramide mass of Molt-4 cells in response t...

متن کامل

Sphingolipid metabolism is a crucial determinant of cellular fate in nonstimulated proliferating Madin-Darby canine kidney (MDCK) cells.

The present report was addressed to study the influence of sphingolipid metabolism in determining cellular fate. In nonstimulated proliferating Madin-Darby canine kidney (MDCK) cells, sphingolipid de novo synthesis is branched mainly to a production of sphingomyelin and ceramide, with a minor production of sphingosylphosphocholine, ceramide 1-phosphate, and sphingosine 1-phosphate. Experiments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCI insight

دوره 2 9  شماره 

صفحات  -

تاریخ انتشار 2017